首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Socially induced ovulation synchrony and its effect on seabird population dynamics
  • 本地全文:下载
  • 作者:Shandelle M. Henson ; J. M. Cushing ; James L. Hayward
  • 期刊名称:Journal of Biological Dynamics
  • 印刷版ISSN:1751-3758
  • 电子版ISSN:1751-3766
  • 出版年度:2011
  • 卷号:5
  • 期号:5
  • 页码:495-516
  • DOI:10.1080/17513758.2010.529168
  • 出版社:Taylor & Francis
  • 摘要:Formulae display: ? Mathematical formulae have been encoded as MathML and are displayed in this HTML version using MathJax in order to improve their display. Uncheck the box to turn MathJax off. This feature requires Javascript. Click on a formula to zoom. Spontaneous oscillator synchrony is a form of self-organization in which populations of interacting oscillators ultimately cycle together. This phenomenon occurs in a wide range of physical and biological systems. In rats and humans, oestrous/menstrual cycles synchronize through social stimulation with pheromones acting as synchronizing signals. In previous work, we showed that glaucous-winged gulls ( Larus glaucescens ) can lay eggs synchronously on an every-other-day schedule, and that synchrony increases with colony density. We posed a discrete-time mathematical model for reproduction during the breeding season based on the hypothesis that pre-ovulatory luteinizing hormone surges synchronize by means of visual, auditory and/or olfactory cues. Here, we extend the seasonal model in order to investigate the effect of ovulation synchrony on population dynamics across reproductive seasons. We show that socially stimulated ovulation synchrony can enhance total population size and allow the population to persist at lower birth rates than would otherwise be possible.
  • 关键词:bifurcation; cannibalism; discrete-time model; gull colony; ovulation synchrony
国家哲学社会科学文献中心版权所有