首页    期刊浏览 2024年09月29日 星期日
登录注册

文章基本信息

  • 标题:SEC23B is required for the maintenance of murine professional secretory tissues
  • 本地全文:下载
  • 作者:Jiayi Tao ; Min Zhu ; He Wang
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2012
  • 卷号:109
  • 期号:29
  • 页码:E2001-E2009
  • DOI:10.1073/pnas.1209207109
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:In eukaryotic cells, newly synthesized secretory proteins require COPII (coat protein complex II) to exit the endoplasmic reticulum (ER). COPII contains five core components: SAR1, SEC23, SEC24, SEC13, and SEC31. SEC23 is a GTPase-activating protein that activates the SAR1 GTPase and also plays a role in cargo recognition. Missense mutations in the human COPII paralogues SEC23A and SEC23B result in craniolenticulosutural dysplasia and congenital dyserythropoietic anemia type II, respectively. We now report that mice completely deficient for SEC23B are born with no apparent anemia phenotype, but die shortly after birth, with degeneration of professional secretory tissues. In SEC23B-deficient embryonic pancreas, defects occur in exocrine and endocrine tissues shortly after differentiation. Pancreatic acini are completely devoid of zymogen granules, and the ER is severely distended. Similar ultrastructural alterations are also observed in salivary glands, but not in liver. Accumulation of proteins in the ER lumen activates the proapoptotic pathway of the unfolded protein response, suggesting a central role for apoptosis in the degeneration of these tissues in SEC23B-deficient embryos. Although maintenance of the secretory pathway should be required by all cells, our findings reveal a surprising tissue-specific dependence on SEC23B for the ER exit of highly abundant cargo, with high levels of SEC23B expression observed in professional secretory tissues. The disparate phenotypes in mouse and human could result from residual SEC23B function associated with the hypomorphic mutations observed in humans, or alternatively, might be explained by a species-specific shift in function between the closely related SEC23 paralogues.
  • 关键词:mammalian embryo abnormalities ; vesicular transport protein ; genetics ; secretory granules ; pancreatitis
国家哲学社会科学文献中心版权所有