首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:On the Complexity of Trial and Error
  • 本地全文:下载
  • 作者:Xiaohui Bei ; Ning Chen ; Shengyu Zhang
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2012
  • 卷号:2012
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:Motivated by certain applications from physics, biochemistry, economics, and computer science in which the objects under investigation are unknown or not directly accessible because of various limitations, we propose a trial-and-error model to examine search problems with unknown inputs. Given a search problem with a hidden input, we are asked to find a valid solution. The way to find such a solution is to propose candidate solutions, i.e., trials, and, using observed violations, i.e., errors, to prepare future proposals. In accordance with our motivating applications, we consider the fairly broad class of constraint satisfaction problems, and assume that errors are signaled by a verification oracle in the format of the index of a violated constraint (with the exact content of the constraint still hidden). The objective is to design time- and/or trial-efficient algorithms that will find a valid solution or alternatively, to show that the problem is intrinsically hard. Our discoveries can be summarized as follows. On one hand, despite the seemingly very little information provided by the verification oracle, efficient algorithms do exist for a number of important problems. For the Nash, Core, Stable Matching, and SAT problems, the unknown-input versions are as hard as the corresponding known-input versions, up to a factor of polynomial. We further conduct a closer study of the latter two problems and give almost tight bounds on their trial complexities. The techniques employed to prove these results vary considerably, including, e.g., order theory and the ellipsoid method with a strong separation oracle. On the other hand, there are problems whose complexities are substantially increased in the unknown-input model. For Graph Isomorphism and Group Isomorphism, in particular, although there are trial-efficient algorithms, no time-efficient algorithms exist (unless PH collapses and P = NP, respectively). These results also imply lower bounds on the tradeoff between time and trial complexities. The proofs use quite nonstandard reductions, in which an efficient simulator is carefully designed to simulate a desirable but computationally unaffordable oracle. Our model investigates the value of information, and our results demonstrate that the lack of input information can introduce various levels of extra difficulty. The model accommodates a wide range of combinatorial and algebraic structures, and exhibits intimate connections with (and we hope can also serve as a useful supplement to) certain existing learning and complexity theories.
  • 关键词:algorithm design, Computational Complexity, hidden input
国家哲学社会科学文献中心版权所有