首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Approximate Simulation-free Bayesian Inference for Multiple Changepoint Models with Dependence within Segments
  • 本地全文:下载
  • 作者:Jason Wyse ; Nial Friel ; Havard Rue
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2011
  • 卷号:06
  • 期号:04
  • DOI:10.1214/11-BA620
  • 出版社:International Society for Bayesian Analysis
  • 摘要:

    This paper proposes approaches for the analysis of multiple change-
    point models when dependency in the data is modelled through a hierarchical
    Gaussian Markov random ¯eld. Integrated nested Laplace approximations are
    used to approximate data quantities, and an approximate ¯ltering recursions ap-
    proach is proposed for savings in compuational cost when detecting changepoints.
    All of these methods are simulation free. Analysis of real data demonstrates the
    usefulness of the approach in general. The new models which allow for data de-
    pendence are compared with conventional models where data within segments is
    assumed independent

  • 关键词:hangepoints; Gaussian Markov Random Field; Integrated NestedLaplace Approximation (INLA); approximate inference; model selection
国家哲学社会科学文献中心版权所有