摘要:Problem statement: Research on Smooth Support Vector Machine (SSVM) is an active field in data mining. Many researchers developed the method to improve accuracy of the result. This study proposed a new SSVM for classification problems. It is called Multiple Knot Spline SSVM (MKS-SSVM). To evaluate the effectiveness of our method, we carried out an experiment on Pima Indian diabetes dataset. The accuracy of previous results of this data still under 80% so far. Approach: First, theoretical of MKS-SSVM was presented. Then, application of MKS-SSVM and comparison with SSVM in diabetes disease diagnosis were given. Results: Compared to the SSVM, the proposed MKS-SSVM showed better performance in classifying diabetes disease diagnosis with accuracy 93.2%. Conclusion: The results of this study showed that the MKS-SSVM was effective to detect diabetes disease diagnosis and this is very promising compared to the previously reported results.
关键词:Smooth support vector machine; diabetes disease diagnosis; classification