出版社:SISSA, Scuola Internazionale Superiore di Studi Avanzati
摘要:In Euclidean four-dimensional SU(N) pure gauge theory, eigenvalue distributions of Wilson loop parallel transport matrices around closed spacetime curves show non-analytic behavior (a ’large- N phase transition’) at a critical size of the curve. We focus mainly on an observable composed of traces of the Wilson loop operator in all totally antisymmetric representations, which is regularized with the help of smearing. By studying sequences of squareWilson loops on a hypercubic lattice with standard Wilson action, it is shown that this observable has a nontrivial continuum limit as a function of the physical size of the loop. We furthermore present (preliminary) numerical results confirming that, for large N, the N dependence in the critical regime is governed by the universal exponents 1=2 and 3=4 as expected (Burgers universality).