首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Multi GPU Performance of Conjugate Gradient Solver with Staggered Fermions in Mixed Precision
  • 本地全文:下载
  • 作者:Y.C. Jang ; H.J. Kim ; W. Lee
  • 期刊名称:PoS - Proceedings of Science
  • 印刷版ISSN:1824-8039
  • 出版年度:2011
  • 卷号:2011
  • 期号:Lattice2011
  • 出版社:SISSA, Scuola Internazionale Superiore di Studi Avanzati
  • 摘要:GPU has a significantly higher performance in single-precision computing than that of double precision. Hence, it is important to take a maximal advantage of the single precision in the CG inverter, using the mixed precision method. We have implemented mixed precision algorithm to our multi GPU conjugate gradient solver. The single precision calculation use half of the memory that is used by the double precision calculation, which allows twice faster data transfer in memory I/O. In addition, the speed of floating point calculations is 8 times faster in single precision than in double precision. The overall performance of our CUDA code for CG is 145 giga flops per GPU (GTX480), which does not include the infiniband network communication. If we include the infiniband communication, the overall performance is 36 giga flops per GPU (GTX480).
国家哲学社会科学文献中心版权所有