期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2012
卷号:109
期号:34
页码:13584-13589
DOI:10.1073/pnas.1211550109
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Aggregation of destabilized mutants of the tumor suppressor p53 is a major route for its loss of activity. In order to assay drugs that inhibit aggregation of p53, we established the basic kinetics of aggregation of its core domain, using the mutant Y220C that has a mutation-induced, druggable cavity. Aggregation monitored by light scattering followed lag kinetics. Electron microscopy revealed the formation of small aggregates that subsequently grew to larger amorphous aggregates. The kinetics of aggregation produced surprising results: progress curves followed either by the binding of Thioflavin T or the fluorescence of the protein at 340 nm fitted well to simple two-step sequential first-order lag kinetics with rate constants k1 and k2 that were independent of protein concentration, and not to classical nucleation-growth. We suggest a mechanism of first-order formation of an aggregation competent state as being rate determining followed by rapid polymerization with the higher order kinetics. By measuring the inhibition kinetics of k1 and k2, we resolved that the process with the higher rate constant followed that of the lower. Further, there was only partial inhibition of k1 and k2, which showed two parallel pathways of aggregation, one via a state that requires unfolding of the protein and the other of partial unfolding with the ligand still bound. Inhibition kinetics of ligands provides a useful tool for probing an aggregation mechanism.