首页    期刊浏览 2024年09月29日 星期日
登录注册

文章基本信息

  • 标题:Formal definition of a user-adaptive and length-optimal routing graph for complex indoor environments
  • 本地全文:下载
  • 作者:Marcus Goetz ; Alexander Zipf
  • 期刊名称:Geo-spatial Information Science
  • 印刷版ISSN:1009-5020
  • 电子版ISSN:1993-5153
  • 出版年度:2011
  • 卷号:14
  • 期号:2
  • 页码:119-128
  • DOI:10.1007/s11806-011-0474-3
  • 出版社:Taylor and Francis Ltd
  • 摘要:Car routing solutions are omnipresent and solutions for pedestrians also exist. Furthermore, public or commercial buildings are getting bigger and the complexity of their internal structure has increased. Consequently, the need for indoor routing solutions has emerged. Some prototypes are available, but they still lack semantically-enriched modelling (e.g., access constraints, labels, etc.) and are not suitable for providing user-adaptive length-optimal routing in complex buildings. Previous approaches consider simple rooms, concave rooms, and corridors, but important characteristics such as distinct areas in huge rooms and solid obstacles inside rooms are not considered at all, although such details can increase navigation accuracy. By formally defining a weighted indoor routing graph, it is possible to create a detailed and user-adaptive model for route computation. The defined graph also contains semantic information such as room labels, door accessibility constraints, etc. Furthermore, one-way paths inside buildings are considered, as well as three-dimensional building parts, e.g., elevators or stairways. A hierarchical structure is also possible with the presented graph model.
  • 关键词:3D indoor navigation; 3D indoor routing; city modelling; formal definition; routing graph; buildings
国家哲学社会科学文献中心版权所有