首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Unsupervised change detection in multitemporal SAR images using MRF models
  • 本地全文:下载
  • 作者:Liming Jiang ; Mingsheng Liao ; Lu Zhang
  • 期刊名称:Geo-spatial Information Science
  • 印刷版ISSN:1009-5020
  • 电子版ISSN:1993-5153
  • 出版年度:2007
  • 卷号:10
  • 期号:2
  • 页码:111-116
  • DOI:10.1007/s11806-007-0051-y
  • 出版社:Taylor and Francis Ltd
  • 摘要:An unsupervised change-detection method that considers the spatial contextual information in a log-ratio difference image generated from multitemporal SAR images is proposed. A Markov random filed (MRF) model is particularly employed to exploit statistical spatial correlation of intensity levels among neighboring pixels. Under the assumption of the independency of pixels and mixed Gaussian distribution in the log-ratio difference image, a stochastic and iterative EM-MPM change-detection algorithm based on an MRF model is developed. The EM-MPM algorithm is based on a maximiser of posterior marginals (MPM) algorithm for image segmentation and an expectation-maximum (EM) algorithm for parameter estimation in a completely automatic way. The experiment results obtained on multitemporal ERS-2 SAR images show the effectiveness of the proposed method.
  • 关键词:change detection; multitemporal SAR image; Markov random field; EM algorithm
国家哲学社会科学文献中心版权所有