This paper presents an approach for adjusting Felder-Silverman learning styles model for application in development of adaptive e-learning systems. Main goal of the paper is to improve the existing e-learning courses by developing a method for adaptation based on learning styles. The proposed method includes analysis of data related to students characteristics and applying the concept of personalization in creating e-learning courses. The research has been conducted at Faculty of organizational sciences, University of Belgrade, during winter semester of 2009/10, on sample of 318 students. The students from the experimental group were divided in three clusters, based on data about their styles identified using adjusted Felder-Silverman questionnaire. Data about learning styles collected during the research were used to determine typical groups of students and then to classify students into these groups. The classification was performed using data mining techniques. Adaptation of the e-learning courses was implemented according to results of data analysis. Evaluation showed that there was statistically significant difference in the results of students who attended the course adapted by using the described method, in comparison with results of students who attended course that was not adapted.