首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Linear algorithms for recognizing and parsing superpositional graphs
  • 本地全文:下载
  • 作者:Peder Ahti ; Nestra Härmel ; Raik Jaan
  • 期刊名称:Facta universitatis - series: Electronics and Energetics
  • 印刷版ISSN:0353-3670
  • 电子版ISSN:2217-5997
  • 出版年度:2011
  • 卷号:24
  • 期号:3
  • 页码:325-339
  • DOI:10.2298/FUEE1103325P
  • 出版社:University of Niš
  • 摘要:

    Structurally synthesized binary decision diagrams (SSBDD) are a special type of BDDs that are generated by superposition according to the structure of propositional formula. Fast algorithms for simulation, diagnostic reasoning and test generation running on SSBDDs exploit their specific properties. Hence the correctness of SSBDDs should be checked before using those algorithms. The problem of recognizing SSBDDs can be reduced to the problem of recognizing their skeleton, namely superpositional graphs, which are a proper subclass of binary graphs. This paper presents linear time algorithms for testing whether a binary graph is a superpositional graph and for restoring the history of its generating process.

  • 关键词:BDD; binary graph; structurally synthesized binary decision diagram(SSBDD); recognition algorithm
国家哲学社会科学文献中心版权所有