This paper shows the results of Monte Carlo simulations of the photon reflection from homogenous plates of the shield materials made of water, aluminum, and iron. Perpendicular incidence of a monoenergetic photon beam of the initial energy of 20 keV up to 100 keV is considered. The numerical experiments were performed using the verified Monte Carlo programs MCNP-4C, FOTELP-2K3, and PENELOPE-2005. As the result, the values of difference number albedo distributed in ten even intervals according to the energy and nine even intervals according to the polar angle of reflected photons were obtained. Out of these data, the spectral albedo coefficients for all three materials and three initial photon energies of 40 keV, 60 keV, and 100 keV were calculated, graphically presented, and analyzed. The values of the spectral albedo determined on the basis of MCNP-4C code were compared to the results of the early simulations of the photon reflection performed in Russia and in the USA. Also, with the help of MCNP-4C program, the yield of fluorescent photons to the spectrum of the reflected radiation was registered, which can be seen in the graphs in the form of the peak at the energy of 7.112 keV only at the shielding plates made of iron.