首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Improving categorical data clustering algorithm by weighting uncommon attribute value matches
  • 本地全文:下载
  • 作者:He Zengyou ; Xu Xiaofei ; Deng Shenchun
  • 期刊名称:Computer Science and Information Systems
  • 印刷版ISSN:1820-0214
  • 电子版ISSN:2406-1018
  • 出版年度:2006
  • 卷号:3
  • 期号:1
  • 页码:23-32
  • DOI:10.2298/CSIS0601023H
  • 出版社:ComSIS Consortium
  • 摘要:

    This paper presents an improved Squeezer algorithm for categorical data clustering by giving greater weight to uncommon attribute value matches in similarity computations. Experimental results on real life datasets show that, the modified algorithm is superior to the original Squeezer algorithm and other clustering algorithm with respect to clustering accuracy.

国家哲学社会科学文献中心版权所有