首页    期刊浏览 2025年12月20日 星期六
登录注册

文章基本信息

  • 标题:On the application of artificial neural network in analyzing and studying daily loads of Jordan power system plant
  • 本地全文:下载
  • 作者:Najim Salam A. ; Al-Omari Zakaria A.M. ; Said Samir M.
  • 期刊名称:Computer Science and Information Systems
  • 印刷版ISSN:1820-0214
  • 电子版ISSN:2406-1018
  • 出版年度:2008
  • 卷号:5
  • 期号:1
  • 页码:127-136
  • DOI:10.2298/CSIS0801127N
  • 出版社:ComSIS Consortium
  • 摘要:

    In this paper, we propose a neural network approach to forecast AM/PM Jordan electric power load curves based on several parameters (temperature, date and the status of the day). The proposed method has an advantage of dealing with not only the nonlinear part of load curve but also with rapid temperature change of forecasted day, weekend and special day features. The proposed neural network is used to modify the load curve of a similar day by using the previous information. The suitability of the proposed approach is illustrated through an application to actual load data of Electric Power Company in Jordan. The results show an acceptable prediction for Short-Term Electrical Load Forecasting (STELF), with maximum regression factor 90%.

  • 关键词:artificial neural network (ANN); forecasting; multi layer perceptron (MLPs); back propagation (BP); short-term electrical loadforecasting (STELF)
国家哲学社会科学文献中心版权所有