首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Microbial oceanography of anoxic oxygen minimum zones
  • 本地全文:下载
  • 作者:Osvaldo Ulloa ; Donald E. Canfield ; Edward F. DeLong
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2012
  • 卷号:109
  • 期号:40
  • 页码:15996-16003
  • DOI:10.1073/pnas.1205009109
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N2) and nitrous oxide (N2O) gases. Anaerobic microbial processes, including the two pathways of N2 production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two "end points" represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future.
国家哲学社会科学文献中心版权所有