摘要:While there is general consensus that observed global mean air temperature has increased during the past few decades and will very likely continue to rise in the coming decades, the assessment of the effective impacts of increased global mean air temperature on a specific regional-scale system remains highly challenging. This study takes up the widely discussed concept of limiting global mean temperature to a certain target value, like the so-called 2 °C target, to assess the related impacts on the Swiss Alpine glaciers. A model setup is introduced that uses and combines homogenized long-term meteorological observations and three ensembles of transient gridded Regional Climate Model simulations to drive a distributed glacier mass balance model under a (regionalized) global 2 °C target scenario. 101 glaciers are analyzed representing about 50% of the glacierized area and 75% of the ice volume in Switzerland. In our study, the warming over Switzerland, which corresponds to the global 2 °C target is met around 2030, 2045 and 2055 (depending on the ensemble) for Switzerland, and all glaciers have fully adjusted to the new climate conditions at around 2150. By this time and relative to the year 2000, the glacierized area and volume are both decreased to about 35% and 20%, respectively, and glacier-based runoff is reduced by about 70%.