首页    期刊浏览 2025年07月03日 星期四
登录注册

文章基本信息

  • 标题:Unsupervised Topographic Learning for Spatiotemporal Data Mining
  • 本地全文:下载
  • 作者:Guénaël Cabanes ; Younès Bennani
  • 期刊名称:Advances in Artificial Intelligence
  • 印刷版ISSN:1687-7470
  • 电子版ISSN:1687-7489
  • 出版年度:2010
  • 卷号:2010
  • DOI:10.1155/2010/832542
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In recent years, the size and complexity of datasets have shown an exponential growth. In many application areas, huge amounts of data are generated, explicitly or implicitly containing spatial or spatiotemporal information. However, the ability to analyze these data remains inadequate, and the need for adapted data mining tools becomes a major challenge. In this paper, we propose a new unsupervised algorithm, suitable for the analysis of noisy spatiotemporal Radio Frequency IDentification (RFID) data. Two real applications show that this algorithm is an efficient data-mining tool for behavioral studies based on RFID technology. It allows discovering and comparing stable patterns in an RFID signal and is suitable for continuous learning.
国家哲学社会科学文献中心版权所有