首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Genetic Algorithm-Based Artificial Neural Network for Voltage Stability Assessment
  • 本地全文:下载
  • 作者:Garima Singh ; Laxmi Srivastava
  • 期刊名称:Advances in Artificial Neural Systems
  • 印刷版ISSN:1687-7594
  • 电子版ISSN:1687-7608
  • 出版年度:2011
  • 卷号:2011
  • DOI:10.1155/2011/532785
  • 出版社:Hindawi Publishing Corporation
  • 摘要:With the emerging trend of restructuring in the electric power industry, many transmission lines have been forced to operate at almost their full capacities worldwide. Due to this, more incidents of voltage instability and collapse are being observed throughout the world leading to major system breakdowns. To avoid these undesirable incidents, a fast and accurate estimation of voltage stability margin is required. In this paper, genetic algorithm based back propagation neural network (GABPNN) has been proposed for voltage stability margin estimation which is an indication of the power system's proximity to voltage collapse. The proposed approach utilizes a hybrid algorithm that integrates genetic algorithm and the back propagation neural network. The proposed algorithm aims to combine the capacity of GAs in avoiding local minima and at the same time fast execution of the BP algorithm. Input features for GABPNN are selected on the basis of angular distance-based clustering technique. The performance of the proposed GABPNN approach has been compared with the most commonly used gradient based BP neural network by estimating the voltage stability margin at different loading conditions in 6-bus and IEEE 30-bus system. GA based neural network learns faster, at the same time it provides more accurate voltage stability margin estimation as compared to that based on BP algorithm. It is found to be suitable for online applications in energy management systems.
国家哲学社会科学文献中心版权所有