首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Cross-Validation, Bootstrap, and Support Vector Machines
  • 本地全文:下载
  • 作者:Masaaki Tsujitani ; Yusuke Tanaka
  • 期刊名称:Advances in Artificial Neural Systems
  • 印刷版ISSN:1687-7594
  • 电子版ISSN:1687-7608
  • 出版年度:2011
  • 卷号:2011
  • DOI:10.1155/2011/302572
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper considers the applications of resampling methods to support vector machines (SVMs). We take into account the leaving-one-out cross-validation (CV) when determining the optimum tuning parameters and bootstrapping the deviance in order to summarize the measure of goodness-of-fit in SVMs. The leaving-one-out CV is also adapted in order to provide estimates of the bias of the excess error in a prediction rule constructed with training samples. We analyze the data from a mackerel-egg survey and a liver-disease study.
国家哲学社会科学文献中心版权所有