摘要:This paper considers the applications of resampling methods to support vector machines (SVMs). We take into account the leaving-one-out cross-validation (CV) when determining the optimum tuning parameters and bootstrapping the deviance in order to summarize the measure of goodness-of-fit in SVMs. The leaving-one-out CV is also adapted in order to provide estimates of the bias of the excess error in a prediction rule constructed with training samples. We analyze the data from a mackerel-egg survey and a liver-disease study.