首页    期刊浏览 2024年11月06日 星期三
登录注册

文章基本信息

  • 标题:A Probability Collectives Approach with a Feasibility-Based Rule for Constrained Optimization
  • 本地全文:下载
  • 作者:Anand J. Kulkarni ; K. Tai
  • 期刊名称:Applied Computational Intelligence and Soft Computing
  • 印刷版ISSN:1687-9724
  • 电子版ISSN:1687-9732
  • 出版年度:2011
  • 卷号:2011
  • DOI:10.1155/2011/980216
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper demonstrates an attempt to incorporate a simple and generic constraint handling technique to the Probability Collectives (PC) approach for solving constrained optimization problems. The approach of PC optimizes any complex system by decomposing it into smaller subsystems and further treats them in a distributed and decentralized way. These subsystems can be viewed as a Multi-Agent System with rational and self-interested agents optimizing their local goals. However, as there is no inherent constraint handling capability in the PC approach, a real challenge is to take into account constraints and at the same time make the agents work collectively avoiding the tragedy of commons to optimize the global/system objective. At the core of the PC optimization methodology are the concepts of Deterministic Annealing in Statistical Physics, Game Theory and Nash Equilibrium. Moreover, a rule-based procedure is incorporated to handle solutions based on the number of constraints violated and drive the convergence towards feasibility. Two specially developed cases of the Circle Packing Problem with known solutions are solved and the true optimum results are obtained at reasonable computational costs. The proposed algorithm is shown to be sufficiently robust, and strengths and weaknesses of the methodology are also discussed.
国家哲学社会科学文献中心版权所有