首页    期刊浏览 2025年02月25日 星期二
登录注册

文章基本信息

  • 标题:Multiparameter Statistical Models from <svg style="vertical-align:-0.45pt;width:83.5625px;" id="M1" height="20.262501" version="1.1" viewBox="0 0 83.5625 20.262501" width="83.5625" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,20.2625)"> <g transform="translate(72,-55.79)"> <text transform="matrix(1,0,0,-1,-71.95,56.29)"> <tspan style="font-size: 17.93px; " x="0" y="0">𝑁</tspan> </text> <text transform="matrix(1,0,0,-1,-55.08,63.46)"> <tspan style="font-size: 12.55px; " x="0" y="0">2</tspan> </text> <text transform="matrix(1,0,0,-1,-44.32,56.29)"> <tspan style="font-size: 17.93px; " x="0" y="0">×</tspan> <tspan style="font-size: 17.93px; " x="15.458246" y="0">𝑁</tspan> </text> <text transform="matrix(1,0,0,-1,-11.98,63.46)"> <tspan style="font-size: 12.55px; " x="0" y="0">2</tspan> </text> </g> </g> </svg> Braid Matrices: Explicit Eigenvalues of Transfer Matrices <svg style="vertical-align:-0.0pt;width:31.299999px;" id="M2" height="19.700001" version="1.1" viewBox="0 0 31.299999 19.700001" width="31.299999" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,19.7)"> <g transform="translate(72,-56.24)"> <text transform="matrix(1,0,0,-1,-71.95,56.29)"> <tspan style="font-size: 17.93px; " x="0" y="0">T</tspan> </text> <text transform="matrix(1,0,0,-1,-60.99,63.46)"> <tspan style="font-size: 12.55px; " x="0" y="0">(</tspan> <tspan style="font-size: 12.55px; " x="4.1801491" y="0">𝑟</tspan> <tspan style="font-size: 12.55px; " x="9.3017731" y="0">)</tspan> </text> </g> </g> </svg>, Spin Chains, Factorizable Scatterings for All <svg style="vertical-align:-0.0pt;width:21.2125px;" id="M3" height="14.7625" version="1.1" viewBox="0 0 21.2125 14.7625" width="21.2125" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,14.7625)"> <g transform="translate(72,-60.19)"> <text transform="matrix(1,0,0,-1,-71.95,60.24)"> <tspan style="font-size: 17.93px; " x="0" y="0">𝑁</tspan> </text> </g> </g> </svg>
  • 本地全文:下载
  • 作者:B. Abdesselam ; A. Chakrabarti
  • 期刊名称:Advances in Mathematical Physics
  • 印刷版ISSN:1687-9120
  • 电子版ISSN:1687-9139
  • 出版年度:2012
  • 卷号:2012
  • DOI:10.1155/2012/193190
  • 出版社:Hindawi Publishing Corporation
  • 摘要:For a class of multiparameter statistical models based on 𝑁2×𝑁2 braid matrices, the eigenvalues of the transfer matrix 𝐓(𝑟) are obtained explicitly for all (𝑟,𝑁). Our formalism yields them as solutions of sets of linear equations with simple constant coefficients. The role of zero-sum multiplets constituted in terms of roots of unity is pointed out, and their origin is traced to circular permutations of the indices in the tensor products of basis states induced by our class of 𝐓(𝑟) matrices. The role of free parameters, increasing as 𝑁2 with N, is emphasized throughout. Spin chain Hamiltonians are constructed and studied for all N. Inverse Cayley transforms of the Yang-Baxter matrices corresponding to our braid matrices are obtained for all N. They provide potentials for factorizable S-matrices. Main results are summarized, and perspectives are indicated in the concluding remarks.
国家哲学社会科学文献中心版权所有