首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Unsteady Magnetohydrodynamic Heat Transfer in a Semi-Infinite Porous Medium with Thermal Radiation Flux: Analytical and Numerical Study
  • 本地全文:下载
  • 作者:O. Anwar Bég ; J. Zueco ; S. K. Ghosh
  • 期刊名称:Advances in Numerical Analysis
  • 印刷版ISSN:1687-9562
  • 电子版ISSN:1687-9570
  • 出版年度:2011
  • 卷号:2011
  • DOI:10.1155/2011/304124
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The unsteady, buoyancy-induced, hydromagnetic, thermal convection flow in a semi-infinite porous regime adjacent to an infinite hot vertical plate moving with constant velocity, is studied in the presence of significant thermal radiation. The momentum and energy conservation equations are normalized and then solved using both the Laplace transform technique and Network Numerical Simulation. Excellent agreement is obtained between both analytical and numerical methods. An increase in Hartmann number (𝑀2) strongly decelerates the flow and for very high strength magnetic fields (𝑀2=20), the flow is reversed after a short time interval. The classical velocity overshoot is also detected close to the plate surface for low to intermediate values of 𝑀2 at both small and large times; however this overshoot vanishes for larger strengths of the transverse magnetic field (𝑀2=10). An increase in radiation-conduction parameter (𝐾𝑟) significantly increases temperature throughout the porous regime at both small and larger times, adjacent to the plate, but decreases the shear stress magnitudes at the plate. Temperature gradient is reduced at the plate surface for all times, with a rise in radiation-conduction parameter (𝐾𝑟). Shear stress is reduced considerably with an increase in Darcian drag parameter (𝐾𝑝).
国家哲学社会科学文献中心版权所有