期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2007
卷号:3
DOI:10.1080/15501320701259925
出版社:Hindawi Publishing Corporation
摘要:This paper solves the problem of estimation of the parameters of a hyperexponential density and presents a practical application of the solution in sensor networks. Two novel algorithms for estimating the parameters of the density are formulated. In the first algorithm, an objective function is constructed as a function of the unknown component means and an estimate of the cumulative distribution function (cdf) of the hyperexponential density. The component means are obtained by minimizing this objective function, using quasi-Newtonian techniques. The mixing probabilities are then computed using these known means and linear least squares analysis. In the second algorithm, an objective function of the unknown component means, mixing probabilities, and an estimate of the cdf is constructed. All the 2M parameters are computed by minimizing this objective function, using quasi-Newtonian techniques. The developed algorithms are also compared to the basic EM algorithm, and their relative advantages over the EM algorithm are discussed. The algorithms developed are computationally efficient and easily implemented, and hence, are suitable for low-power and sensor nodes with limited storage and computational capacity. In particular, we demonstrate how the structure of these algorithms may be exploited to be effectively utilized in practical situations, and are hence ideal for sensor networks.