文章基本信息
标题: Calculating Zeros of the <svg style="vertical-align:-4.626pt;width:11.125px;" id="M1" height="15.925" version="1.1" viewBox="0 0 11.125 15.925" width="11.125" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg">
<g transform="matrix(.022,0,0,-.022,.062,10.1)"><path id="x1D45E" d="M474 429q-19 -69 -47 -222l-65 -347q-8 -49 0 -60t49 -16l26 -3l-4 -26l-246 -12l4 25l17 3q37 6 50 20.5t23 60.5l67 321h-2q-65 -79 -150 -138q-69 -47 -104 -47q-28 0 -48.5 32t-20.5 81q0 78 35 148t90 117q67 57 161 77q23 5 58 5q43 0 90 -15zM387 387
q-30 16 -75 16q-58 0 -92 -27q-49 -39 -78.5 -112t-29.5 -136q0 -34 8.5 -52.5t21.5 -18.5q40 0 109.5 63.5t103.5 115.5q16 53 32 151z"/></g>
</svg>-Genocchi Polynomials Associated with <svg style="vertical-align:-4.626pt;width:13.4125px;" id="M2" height="17.5" version="1.1" viewBox="0 0 13.4125 17.5" width="13.4125" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg">
<g transform="matrix(.022,0,0,-.022,.062,11.675)"><path id="x1D45D" d="M570 304q0 -108 -87 -199q-40 -42 -94.5 -74t-105.5 -43q-41 0 -65 11l-29 -141q-9 -45 -1.5 -58t45.5 -16l26 -2l-5 -29l-241 -10l4 26q51 10 67.5 24t26.5 60l113 520q-54 -20 -89 -41l-7 26q38 28 105 53l11 49q20 25 77 58l8 -7l-17 -77q39 14 102 14q82 0 119 -36
t37 -108zM482 289q0 114 -113 114q-26 0 -66 -7l-70 -327q12 -14 32 -25t39 -11q59 0 118.5 81.5t59.5 174.5z"/></g>
</svg>-adic
<svg style="vertical-align:-4.626pt;width:11.125px;" id="M3" height="15.925" version="1.1" viewBox="0 0 11.125 15.925" width="11.125" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg">
<g transform="matrix(.022,0,0,-.022,.062,10.1)"><use xlink:href="#x1D45E"/></g>
</svg>-Integral on
<svg style="vertical-align:-7.55826pt;width:26.799999px;" id="M4" height="24.6625" version="1.1" viewBox="0 0 26.799999 24.6625" width="26.799999" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg">
<g transform="matrix(.022,0,0,-.022,.062,15.188)"><path id="x2124" d="M734 170q-25 -130 -36 -170h-661l-8 15l420 599h-173q-77 0 -102 -7t-39 -29q-19 -29 -35 -87l-29 1l12 183h24q9 -16 19 -20.5t34 -4.5h543l7 -14l-416 -598l166 -2q94 0 131.5 7.5t58.5 29.5q28 29 55 103zM639 614h-89l-397 -567l88 -7z"/></g>
<g transform="matrix(.016,0,0,-.016,16.813,20.575)"><use xlink:href="#x1D45D"/></g>
</svg> 本地全文: 下载 作者: C. S. Ryoo 期刊名称: International Journal of Mathematics and Mathematical Sciences 印刷版ISSN: 0161-1712 电子版ISSN: 1687-0425 出版年度: 2012 卷号: 2012 DOI: 10.1155/2012/210768 出版社: Hindawi Publishing Corporation 摘要: In this paper we construct the new analogues of Genocchi the numbers and polynomials. We also observe the behavior of complex roots of the -Genocchi polynomials , using numerical investigation. By means of numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the -Genocchi polynomials . Finally, we give a table for the solutions of the -Genocchi polynomials .