首页    期刊浏览 2025年12月03日 星期三
登录注册

文章基本信息

  • 标题:Trigonometric Approximation of Signals (Functions) Belonging to <svg style="vertical-align:-2.29482pt;width:70.362503px;" id="M1" height="14.0625" version="1.1" viewBox="0 0 70.362503 14.0625" width="70.362503" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,14.0625)"> <g transform="translate(72,-60.75)"> <text transform="matrix(1,0,0,-1,-71.95,63.09)"> <tspan style="font-size: 12.50px; " x="0" y="0">𝑊</tspan> <tspan style="font-size: 12.50px; " x="11.452748" y="0">(</tspan> <tspan style="font-size: 12.50px; " x="15.616247" y="0">𝐿</tspan> </text> <text transform="matrix(1,0,0,-1,-47.48,68.09)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝑟</tspan> </text> <text transform="matrix(1,0,0,-1,-43.41,63.09)"> <tspan style="font-size: 12.50px; " x="0" y="0">,</tspan> <tspan style="font-size: 12.50px; " x="5.2012482" y="0">𝜉</tspan> <tspan style="font-size: 12.50px; " x="11.240197" y="0">(</tspan> <tspan style="font-size: 12.50px; " x="15.403696" y="0">𝑡</tspan> <tspan style="font-size: 12.50px; " x="19.317135" y="0">)</tspan> <tspan style="font-size: 12.50px; " x="23.480635" y="0">)</tspan> </text> </g> </g> </svg> Class by Matrix <svg style="vertical-align:-4.74141pt;width:59.049999px;" height="19.674999" version="1.1" viewBox="0 0 59.049999 19.674999" width="59.049999" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,19.675)"> <g transform="translate(72,-56.26)"> <text transform="matrix(1,0,0,-1,-71.95,61.03)"> <tspan style="font-size: 12.50px; " x="0" y="0">(</tspan> <tspan style="font-size: 12.50px; " x="4.1634989" y="0">𝐶</tspan> </text> <text transform="matrix(1,0,0,-1,-58.4,66.03)"> <tspan style="font-size: 8.75px; " x="0" y="0">1</tspan> </text> <text transform="matrix(1,0,0,-1,-50.74,61.03)"> <tspan style="font-size: 12.50px; " x="0" y="0">⋅</tspan> <tspan style="font-size: 12.50px; " x="6.3390212" y="0">𝑁</tspan> </text> <text transform="matrix(1,0,0,-1,-33.75,57.91)"> <tspan style="font-size: 8.75px; " x="0" y="0">𝑝</tspan> </text> <text transform="matrix(1,0,0,-1,-28.97,61.03)"> <tspan style="font-size: 12.50px; " x="0" y="0">)</tspan> </text> </g> </g> </svg> Operator
  • 本地全文:下载
  • 作者:Uaday Singh ; M. L. Mittal ; Smita Sonker
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2012
  • 卷号:2012
  • DOI:10.1155/2012/964101
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Various investigators such as Khan (1974), Chandra (2002), and Liendler (2005) have determined the degree of approximation of 2&#x3c0;-periodic signals (functions) belonging to Lip(𝛼,𝑟) class of functions through trigonometric Fourier approximation using different summability matrices with monotone rows. Recently, Mittal et al. (2007 and 2011) have obtained the degree of approximation of signals belonging to Lip(𝛼,𝑟)- class by general summability matrix, which generalize some of the results of Chandra (2002) and results of Leindler (2005), respectively. In this paper, we determine the degree of approximation of functions belonging to Lip&#x2009;&#x3b1; and 𝑊(𝐿𝑟, 𝜉(𝑡)) classes by using Ces&#xe1;ro-N&#xf6;rlund (𝐶1⋅𝑁𝑝) summability without monotonicity condition on {𝑝𝑛}, which in turn generalizes the results of Lal (2009). We also note some errors appearing in the paper of Lal (2009) and rectify them in the light of observations of Rhoades et al. (2011).
国家哲学社会科学文献中心版权所有