首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Improved Bounds for Radio <svg style="vertical-align:-0.198pt;width:12.275px;" id="M1" height="15.35" version="1.1" viewBox="0 0 12.275 15.35" width="12.275" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,15.35)"> <g transform="translate(72,-59.72)"> <text transform="matrix(1,0,0,-1,-71.95,59.97)"> <tspan style="font-size: 17.93px; " x="0" y="0">𝑘</tspan> </text> </g> </g> </svg>-Chromatic Number of Hypercube <svg style="vertical-align:-4.60088pt;width:26.049999px;" height="20.799999" version="1.1" viewBox="0 0 26.049999 20.799999" width="26.049999" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(1.25,0,0,-1.25,0,20.8)"> <g transform="translate(72,-55.36)"> <text transform="matrix(1,0,0,-1,-71.95,59.99)"> <tspan style="font-size: 17.93px; " x="0" y="0">𝑄</tspan> </text> <text transform="matrix(1,0,0,-1,-57.94,55.51)"> <tspan style="font-size: 12.55px; " x="0" y="0">𝑛</tspan> </text> </g> </g> </svg>
  • 本地全文:下载
  • 作者:Laxman Saha ; Pratima Panigrahi ; Pawan Kumar
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2011
  • 卷号:2011
  • DOI:10.1155/2011/961649
  • 出版社:Hindawi Publishing Corporation
  • 摘要:A number of graph coloring problems have their roots in a communication problem known as the channel assignment problem. The channel assignment problem is the problem of assigning channels (nonnegative integers) to the stations in an optimal way such that interference is avoidedas reported by Hale (2005). Radio 𝑘-coloring of a graph is a special type of channel assignment problem. Kchikech et al. (2005) have given a lower and an upper bound for radio 𝑘-chromatic number of hypercube 𝑄𝑛, and an improvement of their lower bound was obtained by Kola and Panigrahi (2010). In this paper, we further improve Kola et al.'s lower bound as well as Kchikeck et al.'s upper bound. Also, our bounds agree for nearly antipodal number of 𝑄𝑛 when 𝑛≡2 (mod 4).
国家哲学社会科学文献中心版权所有