文章基本信息
标题: Some Identities on the <svg style="vertical-align:-3.294pt" id="M1" height="15.2325" version="1.1" viewBox="0 0 11.51125 15.2325" width="11.51125" xmlns="http://www.w3.org/2000/svg" >
<g transform="matrix(1.25,0,0,-1.25,0,15.2325)">
<text transform="matrix(1,0,0,-1,0.498,3.78)">
<tspan style="font-size: 17.93px; " x="0" y="0">𝑞</tspan>
</text>
</g>
</svg>-Genocchi Polynomials of Higher-Order and
<svg style="vertical-align:-3.294pt" height="15.2325" version="1.1" viewBox="0 0 11.51125 15.2325" width="11.51125" xmlns="http://www.w3.org/2000/svg" >
<g transform="matrix(1.25,0,0,-1.25,0,15.2325)">
<text transform="matrix(1,0,0,-1,0.498,3.78)">
<tspan style="font-size: 17.93px; " x="0" y="0">𝑞</tspan>
</text>
</g>
</svg>-Stirling Numbers by the Fermionic <svg style="vertical-align:-3.294pt" height="15.2325" version="1.1" viewBox="0 0 12.20625 15.2325" width="12.20625" xmlns="http://www.w3.org/2000/svg" >
<g transform="matrix(1.25,0,0,-1.25,0,15.2325)">
<text transform="matrix(1,0,0,-1,0.498,3.78)">
<tspan style="font-size: 17.93px; " x="0" y="0">𝑝</tspan>
</text>
</g>
</svg>-Adic Integral on <svg style="vertical-align:-3.294pt" height="20.186251" version="1.1" viewBox="0 0 28.502501 20.186251" width="28.502501" xmlns="http://www.w3.org/2000/svg" >
<g transform="matrix(1.25,0,0,-1.25,0,20.18625)">
<text transform="matrix(1,0,0,-1,0.498,3.78)">
<tspan style="font-size: 17.93px; " x="0" y="0">ℤ</tspan>
<tspan style="font-size: 17.93px; " x="13.037109" y="0">𝑝</tspan>
</text>
</g>
</svg> 本地全文: 下载 作者: Seog-Hoon Rim ; Jeong-Hee Jin ; Eun-Jung Moon 等期刊名称: International Journal of Mathematics and Mathematical Sciences 印刷版ISSN: 0161-1712 电子版ISSN: 1687-0425 出版年度: 2010 卷号: 2010 DOI: 10.1155/2010/860280 出版社: Hindawi Publishing Corporation 摘要: A systemic study of some families of 𝑞-Genocchi numbers and families of polynomials of Nörlund type is presented by using the multivariate fermionic 𝑝-adic integral on ℤ𝑝. The study of these higher-order 𝑞-Genocchi numbers and polynomials yields an interesting 𝑞-analog of identities for Stirling numbers.