首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Some Identities on the <svg style="vertical-align:-3.294pt" id="M1" height="15.2325" version="1.1" viewBox="0 0 11.51125 15.2325" width="11.51125" xmlns="http://www.w3.org/2000/svg" > <g transform="matrix(1.25,0,0,-1.25,0,15.2325)"> <text transform="matrix(1,0,0,-1,0.498,3.78)"> <tspan style="font-size: 17.93px; " x="0" y="0">𝑞</tspan> </text> </g> </svg>-Genocchi Polynomials of Higher-Order and <svg style="vertical-align:-3.294pt" height="15.2325" version="1.1" viewBox="0 0 11.51125 15.2325" width="11.51125" xmlns="http://www.w3.org/2000/svg" > <g transform="matrix(1.25,0,0,-1.25,0,15.2325)"> <text transform="matrix(1,0,0,-1,0.498,3.78)"> <tspan style="font-size: 17.93px; " x="0" y="0">𝑞</tspan> </text> </g> </svg>-Stirling Numbers by the Fermionic <svg style="vertical-align:-3.294pt" height="15.2325" version="1.1" viewBox="0 0 12.20625 15.2325" width="12.20625" xmlns="http://www.w3.org/2000/svg" > <g transform="matrix(1.25,0,0,-1.25,0,15.2325)"> <text transform="matrix(1,0,0,-1,0.498,3.78)"> <tspan style="font-size: 17.93px; " x="0" y="0">𝑝</tspan> </text> </g> </svg>-Adic Integral on <svg style="vertical-align:-3.294pt" height="20.186251" version="1.1" viewBox="0 0 28.502501 20.186251" width="28.502501" xmlns="http://www.w3.org/2000/svg" > <g transform="matrix(1.25,0,0,-1.25,0,20.18625)"> <text transform="matrix(1,0,0,-1,0.498,3.78)"> <tspan style="font-size: 17.93px; " x="0" y="0">ℤ</tspan> <tspan style="font-size: 17.93px; " x="13.037109" y="0">𝑝</tspan> </text> </g> </svg>
  • 本地全文:下载
  • 作者:Seog-Hoon Rim ; Jeong-Hee Jin ; Eun-Jung Moon
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2010
  • 卷号:2010
  • DOI:10.1155/2010/860280
  • 出版社:Hindawi Publishing Corporation
  • 摘要:A systemic study of some families of 𝑞-Genocchi numbers and families of polynomials of N&#xf6;rlund type is presented by using the multivariate fermionic 𝑝-adic integral on ℤ𝑝. The study of these higher-order 𝑞-Genocchi numbers and polynomials yields an interesting 𝑞-analog of identities for Stirling numbers.
国家哲学社会科学文献中心版权所有