首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:The <mml:math alttext="$hp$" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>h</mml:mi><mml:mi>p</mml:mi></mml:mrow></mml:math> version of Eulerian-Lagrangian mixed discontinuous finite element methods for advection-diffusion problems
  • 本地全文:下载
  • 作者:Hongsen Chen ; Zhangxin Chen ; Baoyan Li
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2003
  • 卷号:2003
  • DOI:10.1155/S0161171203112215
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We study the hp version of three families of Eulerian-Lagrangian mixed discontinuous finite element (MDFE) methods for the numerical solution of advection-diffusion problems. These methods are based on a space-time mixed formulation of the advection-diffusion problems. In space, they use discontinuous finite elements, and in time they approximately follow the Lagrangian flow paths (i.e., the hyperbolic part of the problems). Boundary conditions are incorporated in a natural and mass conservative manner. In fact, these methods are locally conservative. The analysis of this paper focuses on advection-diffusion problems in one space dimension. Error estimates are explicitly obtained in the grid size h, the polynomial degree p, and the solution regularity; arbitrary space grids and polynomial degree are allowed. These estimates are asymptotically optimal in both h and p for some of these methods. Numerical results to show convergence rates in h and p of the Eulerian-Lagrangian MDFE methods are presented. They are in a good agreement with the theory.
国家哲学社会科学文献中心版权所有