期刊名称:International Journal of Mathematics and Mathematical Sciences
印刷版ISSN:0161-1712
电子版ISSN:1687-0425
出版年度:2002
卷号:29
DOI:10.1155/S0161171202007688
出版社:Hindawi Publishing Corporation
摘要:Let Y be a Banach space that has no finite cotype and p a real number satisfying 1≤p<∞. We prove that a set ℳ⊂Πp(X,Y) is uniformly dominated if and
only if there exists a constant C>0 such that, for every finite set {(xi,Ti):i=1,…,n}⊂X×ℳ, there is an operator T∈Πp(X,Y)
satisfying πp(T)≤C and ‖Tixi‖≤‖Txi‖ for i=1,…,n.