首页    期刊浏览 2025年09月15日 星期一
登录注册

文章基本信息

  • 标题:One-sided Lebesgue Bernoulli maps of the sphere of degree <mml:math alttext="$n^2$" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>n</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math> and <mml:math alttext="$2n^2$" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:msup><mml:mi>n</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:math>
  • 本地全文:下载
  • 作者:Julia A. Barnes ; Lorelei Koss
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:2000
  • 卷号:23
  • DOI:10.1155/S0161171200001484
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We prove that there are families of rational maps of the sphere of degree n2(n=2,3,4,&#8230;) and 2n2(n=1,2,3,&#8230;) which, with respect to a finite invariant measure equivalent to the surface area measure, are isomorphic to one-sided Bernoulli shifts of maximal entropy. The maps in question were constructed by B&#246;ettcher (1903--1904) and independently by Latt&#232;s (1919). They were the first examples of maps with Julia set equal to the whole sphere.
国家哲学社会科学文献中心版权所有