首页    期刊浏览 2025年06月10日 星期二
登录注册

文章基本信息

  • 标题:Biologically inspired LED lens from cuticular nanostructures of firefly lantern
  • 本地全文:下载
  • 作者:Jae-Jun Kim ; Youngseop Lee ; Ha Gon Kim
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2012
  • 卷号:109
  • 期号:46
  • 页码:18674-18678
  • DOI:10.1073/pnas.1213331109
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Cuticular nanostructures found in insects effectively manage light for light polarization, structural color, or optical index matching within an ultrathin natural scale. These nanostructures are mainly dedicated to manage incoming light and recently inspired many imaging and display applications. A bioluminescent organ, such as a firefly lantern, helps to out-couple light from the body in a highly efficient fashion for delivering strong optical signals in sexual communication. However, the cuticular nanostructures, except the light-producing reactions, have not been well investigated for physical principles and engineering biomimetics. Here we report a unique observation of high-transmission nanostructures on a firefly lantern and its biological inspiration for highly efficient LED illumination. Both numerical and experimental results clearly reveal high transmission through the nanostructures inspired from the lantern cuticle. The nanostructures on an LED lens surface were fabricated by using a large-area nanotemplating and reconfigurable nanomolding with heat-induced shear thinning. The biologically inspired LED lens, distinct from a smooth surface lens, substantially increases light transmission over visible ranges, comparable to conventional antireflection coating. This biological inspiration can offer new opportunities for increasing the light extraction efficiency of high-power LED packages.
  • 关键词:firefly light organ ; antireflective structures ; nanostructures on lens ; light-emitting diode
国家哲学社会科学文献中心版权所有