首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Hybrid Swarm Algorithms for Parameter Identification of an Actuator Model in an Electrical Machine
  • 本地全文:下载
  • 作者:Ying Wu ; Sami Kiviluoto ; Kai Zenger
  • 期刊名称:Advances in Acoustics and Vibration
  • 印刷版ISSN:1687-6261
  • 电子版ISSN:1687-627X
  • 出版年度:2011
  • 卷号:2011
  • DOI:10.1155/2011/637138
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Efficient identification and control algorithms are needed, when active vibration suppression techniques are developed for industrial machines. In the paper a new actuator for reducing rotor vibrations in electrical machines is investigated. Model-based control is needed in designing the algorithm for voltage input, and therefore proper models for the actuator must be available. In addition to the traditional prediction error method a new knowledge-based Artificial Fish-Swarm optimization algorithm (AFA) with crossover, CAFAC, is proposed to identify the parameters in the new model. Then, in order to obtain a fast convergence of the algorithm in the case of a 30 kW two-pole squirrel cage induction motor, we combine the CAFAC and Particle Swarm Optimization (PSO) to identify parameters of the machine to construct a linear time-invariant(LTI) state-space model. Besides that, the prediction error method (PEM) is also employed to identify the induction motor to produce a black box model with correspondence to input-output measurements.
国家哲学社会科学文献中心版权所有