首页    期刊浏览 2024年11月13日 星期三
登录注册

文章基本信息

  • 标题:Transient Cellular Structures in Developing Corpus Callosum of the Human Brain
  • 本地全文:下载
  • 作者:Jovanov-Milošević, N. ; Benjak, Vesna ; Kostović, Ivica
  • 期刊名称:Collegium Antropologicum
  • 印刷版ISSN:0350-6134
  • 出版年度:2006
  • 卷号:30
  • 期号:2
  • 页码:375-381
  • 出版社:Hrvatsko antropološko društvo
  • 摘要:The corpus callosum connects two cerebral hemispheres as the most voluminous fiber system in the human brain. The developing callosal fibers originate from immature pyramidal neurons, grow through complex pathways and cross the midline using different substrates in transient fetal structures. We analyzed cellular structures in the human corpus callosum on postmortem brains from the age of 18 weeks post conception to adult, using glial fibrillary acidic protein, neuron- specific nuclear protein, and chondroitin sulphate immunocytochemistry. We found the presence of transient cellular structures, callosal septa, which divide major fiber bundles and ventrally merge with subcallosal zone forming grooves for callosal axons. The callosal septa are composed of glial fibrillary acidic protein reactive meshwork, neurones and the chondroitin sulphate immunoreactive extracellular matrix. The developmental window of prominence of the callosal septa is between 18-34 weeks post conception which corresponds to the period of most intensive growth of callosal axons in human. During the early postnatal period the callosal septa become thinner and shorter, lose their neuronal and chondroitin sulphate content. In conclusion, transient expression of neuronal, glial and extracellular, growing substrate in the callosal septa, as septa itself, indicates their role in guidance during intensive growth of callosal fibers in the human brain. These findings shed some light on the complex morphogenetic events during the growth of the corpus callosum and represent normative parameters necessary for studies of structural plasticity after perinatal lesions.
  • 关键词:human; development; commissural pathways; subcallosal zone
国家哲学社会科学文献中心版权所有