The paper defines the local decomposition problem for transformations. To solve this problem means to "reconstruct" a given transformation as the colimit of "smaller" ones where the shape of the colimit and the decomposition of the source object of the transformation are fixed in advance. The first result is the soundness of colimit decomposition for arbitrary double pushout transformations in any category, which roughly means that several "local" transformations can be combined into a single "global" one. Moreover, a solution for a certain class of local decomposition problems is given, which generalizes and clarifies recent work on compositionality in graph transformation.