This approach works very well for "terminating" definitions. But it fails to account for "productive" definitions, such as typical definitions of stream-valued functions. We argue that such definitions can be treated in a similar spirit, proceeding from a different unique solvability criterion. Any structured recursive equation defines a coinductive relation between the intended domain and intended codomain (the "coinductive graph"). This relation in turn determines a subset of the intended domain and a quotient of the intended codomain with the property that the equation is uniquely solved for the subset and quotient. The equation is therefore guaranteed to have a unique solution for the intended domain and intended codomain whenever the subset is the full set and the quotient is by equality.