期刊名称:Electronic Proceedings in Theoretical Computer Science
电子版ISSN:2075-2180
出版年度:2012
卷号:104
页码:2-16
DOI:10.4204/EPTCS.104.2
出版社:Open Publishing Association
摘要:Concurrent constraint programming (ccp) is a well-established model for concurrency that singles out the fundamental aspects of asynchronous systems whose agents (or processes) evolve by posting and querying (partial) information in a global medium. Bisimilarity is a standard behavioural equivalence in concurrency theory. However, only recently a well-behaved notion of bisimilarity for ccp, and a ccp partition refinement algorithm for deciding the strong version of this equivalence have been proposed. Weak bisimiliarity is a central behavioural equivalence in process calculi and it is obtained from the strong case by taking into account only the actions that are observable in the system. Typically, the standard partition refinement can also be used for deciding weak bisimilarity simply by using Milner's reduction from weak to strong bisimilarity; a technique referred to as saturation. In this paper we demonstrate that, because of its involved labeled transitions, the above-mentioned saturation technique does not work for ccp. We give an alternative reduction from weak ccp bisimilarity to the strong one that allows us to use the ccp partition refinement algorithm for deciding this equivalence.