首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:AN EXTREMAL PROBLEM FOR UNIVALENT FUNCTIONS
  • 本地全文:下载
  • 作者:Miodrag Iovanov
  • 期刊名称:Constantin Brancusi University's Annals, Letters and Social Sciences Serie
  • 印刷版ISSN:1844-6051
  • 出版年度:2011
  • 期号:3
  • 出版社:Academica Brancusi Publisher
  • 摘要:Let S be the class of functions f(z)=z+a2z 2…, f(0)=0, f′(0)=1 which are regular and univalent in the unit disk |z|<1. For 0≤x≤a≤1 we consider the equation Re [(x 2 -a 2 )f(x)]=0, fєS. (1) Denote φ(x)=Re [(x 2 -a 2 )f(x)]. Because φ(0)=0 and φ(  a)=0 it follows that there is x0є(0,a) such that: φ′( x0)=0 and y0є(-a,0) such that: φ′( y0)=0 The aim of this paper is to find max{x| φ′( x)=0} and min{x| φ′( x)=0}. If x is max{x| φ′(x)=0}, then for x> x the equation φ′( x)=0 does not have real roots. If y is min{y| φ′(y)=0}, then for y< y the equation φ′( y)=0 does not have real roots. Since S is a compact class, there exists x and y . This problem was first proposed by Petru T. Mocanu in [2]. We will determine x and y by using the variational method of Schiffer-Goluzin [1].
  • 关键词:extremal function; regular; univalent
国家哲学社会科学文献中心版权所有