首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Variance Entropy: A Method for Characterizing Perceptual Awareness of Visual Stimulus
  • 本地全文:下载
  • 作者:Meng Hu ; Hualou Liang
  • 期刊名称:Applied Computational Intelligence and Soft Computing
  • 印刷版ISSN:1687-9724
  • 电子版ISSN:1687-9732
  • 出版年度:2012
  • 卷号:2012
  • DOI:10.1155/2012/525396
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Entropy, as a complexity measure, is a fundamental concept for time series analysis. Among many methods, sample entropy (SampEn) has emerged as a robust, powerful measure for quantifying complexity of time series due to its insensitivity to data length and its immunity to noise. Despite its popular use, SampEn is based on the standardized data where the variance is routinely discarded, which may nonetheless provide additional information for discriminant analysis. Here we designed a simple, yet efficient, complexity measure, namely variance entropy (VarEn), to integrate SampEn with variance to achieve effective discriminant analysis. We applied VarEn to analyze local field potential (LFP) collected from visual cortex of macaque monkey while performing a generalized flash suppression task, in which a visual stimulus was dissociated from perceptual experience, to study neural complexity of perceptual awareness. We evaluated the performance of VarEn in comparison with SampEn on LFP, at both single and multiple scales, in discriminating different perceptual conditions. Our results showed that perceptual visibility could be differentiated by VarEn, with significantly better discriminative performance than SampEn. Our findings demonstrate that VarEn is a sensitive measure of perceptual visibility, and thus can be used to probe perceptual awareness of a stimulus.
国家哲学社会科学文献中心版权所有