期刊名称:Applied Computational Intelligence and Soft Computing
印刷版ISSN:1687-9724
电子版ISSN:1687-9732
出版年度:2012
卷号:2012
DOI:10.1155/2012/786387
出版社:Hindawi Publishing Corporation
摘要:This paper deals with transactions with their classes. The classes represent the difference of conditions in the data collection. This paper redefines two kinds of supports: characteristic support and possible support. The former one is based on specific classes assigned to specific patterns. The latter one is based on the
minimum class in the classes. This paper proposes a new method that efficiently discovers patterns whose characteristic supports
are larger than or equal to the predefined minimum support by using their possible supports. Also, this paper verifies the effect of the method through numerical experiments based on the data registered in the UCI machine learning repository and the RFID (radio frequency identification) data collected from two apparel shops.