期刊名称:Applied Computational Intelligence and Soft Computing
印刷版ISSN:1687-9724
电子版ISSN:1687-9732
出版年度:2012
卷号:2012
DOI:10.1155/2012/652391
出版社:Hindawi Publishing Corporation
摘要:A new method called mutable smart bee (MSB) algorithm proposed for cooperative optimizing of the maximum power output (MPO) and minimum entropy generation (MEG) of an Atkinson cycle as a multiobjective, multi-modal mechanical problem. This method utilizes mutable smart bee instead of classical bees. The results have been checked with some of the most common optimizing algorithms like Karaboga’s original artificial bee colony, bees algorithm (BA), improved particle swarm optimization (IPSO), Lukasik firefly algorithm (LFFA), and self-adaptive penalty function genetic algorithm (SAPF-GA). According to obtained results, it can be concluded that Mutable Smart Bee (MSB) is capable to maintain its historical memory for the location and quality of food sources and also a little chance of mutation is considered for this bee. These features were found as strong elements for mining data in constraint areas and the results will prove this claim.