首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Design of the Nonlinear System Predictor Driven by the Bayesian-Gaussian Neural Network of Sliding Window Data
  • 本地全文:下载
  • 作者:Yijian Liu ; Yanjun Fang
  • 期刊名称:Computer and Information Science
  • 印刷版ISSN:1913-8989
  • 电子版ISSN:1913-8997
  • 出版年度:2009
  • 卷号:2
  • 期号:2
  • 页码:26
  • DOI:10.5539/cis.v2n2P26
  • 出版社:Canadian Center of Science and Education
  • 摘要:The model identification of the nonlinear system has been concerned by the industrial community all along. The relationship of the nonlinear dynamic system is contained in the data accumulated in the scene. To better utilize the data about the industrial objects, in this article, we put forward the nonlinear system predictor driven by the Bayesian-Gaussian neural network (NN) model, use the trained threshold matrix and sliding window data to realize the online output prediction for the nonlinear dynamic system. The simulation experiment indicates that the Bayesian-Gaussian NN based on the sliding window data can fulfill the demands of the online identification and prediction of the adaptive nonlinear system.
国家哲学社会科学文献中心版权所有