首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Integrative Gene Selection for Classification of Microarray Data
  • 本地全文:下载
  • 作者:Huey Fang Ong ; Norwati Mustapha ; Md. Nasir Sulaiman
  • 期刊名称:Computer and Information Science
  • 印刷版ISSN:1913-8989
  • 电子版ISSN:1913-8997
  • 出版年度:2011
  • 卷号:4
  • 期号:2
  • 页码:55
  • DOI:10.5539/cis.v4n2p55
  • 出版社:Canadian Center of Science and Education
  • 摘要:Microarray data classification is one of the major interests in health informatics that aims at discovering hidden patterns in gene expression profiles. The main challenge in building this classification system is the curse of dimensionality problem. Thus, there is a considerable amount of studies on gene selection method for building effective classification models. However, most of the approaches consider solely on gene expression values, and as a result, the selected genes might not be biologically meaningful. This paper presents an integrative gene selection for improving microarray data classification performance. The proposed approach employs the association analysis technique to integrate both gene expression and biological data in identifying informative genes. The experimental results show that the proposed gene selection outperformed the traditional method in terms of accuracy and number of selected genes.
国家哲学社会科学文献中心版权所有