首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Chi-Square Test for Anomaly Detection in XML Documents Using Negative Association Rules
  • 本地全文:下载
  • 作者:K. Premalatha ; A.M. Natarajan
  • 期刊名称:Computer and Information Science
  • 印刷版ISSN:1913-8989
  • 电子版ISSN:1913-8997
  • 出版年度:2009
  • 卷号:2
  • 期号:1
  • 页码:35
  • DOI:10.5539/cis.v2n1P35
  • 出版社:Canadian Center of Science and Education
  • 摘要:Normal 0 7.8 ? 0 2 false false false MicrosoftInternetExplorer4 <!-- /* Font Definitions */ @font-face {font-family:??; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-alt:SimSun; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 135135232 16 0 262145 0;} @font-face {font-family:"\@??"; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:3 135135232 16 0 262145 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:??; mso-font-kerning:1.0pt;} /* Page Definitions */ @page {mso-page-border-surround-header:no; mso-page-border-surround-footer:no;} @page Section1 {size:612.0pt 792.0pt; margin:72.0pt 90.0pt 72.0pt 90.0pt; mso-header-margin:36.0pt; mso-footer-margin:36.0pt; mso-paper-source:0;} div.Section1 {page:Section1;} --> /* Style Definitions */ table.MsoNormalTable {mso-style-name:????; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Anomaly detection is the double purpose of discovering interesting exceptions and identifying incorrect data in huge amounts of data.   Since anomalies are rare events, which violate the frequent relationships among data. Normally anomaly detection builds models of normal behavior and automatically detects significant deviations from it.   The proposed system detects the anomalies in nested XML documents by independency between data.   The negative association rules and the chi-square test for independency are applied on the data and a model of abnormal behavior is built as a signature profile.   This signature profile can be used to identify the anomalies in the system. The proposed system limits the unnecessary rules for detecting anomalies.
国家哲学社会科学文献中心版权所有