Changing to alternative protein sources supports production of more economic aquafeeds. Two isocaloric (3.06 kcal/g) and isonitrogenous (40% db) experimental feeds for juvenile yellow perch were formulated with incorporation of fermented soybean meal (FSBM) and soy protein concentrate (SPC), each of which were at two levels (0 and 20% db), along with constant amounts of high protein distillers dried grains (DDG) (~30% db), and appropriate amounts of other ingredients. Using a pilot scale twin-screw extruder, feed production was performed in two replications for each diet at conditioner steam levels of 0.11 to 0.16 kg/min, extruder water of 0.11 to 0.19 kg/min, and screw speeds of 230 to 300 rpm. The effects of SPC and FSBM inclusion on extrudate physical properties were compared with those of a control diet (which contained 20% fishmeal and ~30% DDG). Inclusion of 20% FSBM and 20%SPC resulted in a substantial decrease in unit density by 9.2 and 24%, but an increase in lightness, greenness, yellowness, and expansion ratio of the extrudates by 7, 27, 14, 7, 17, 34, 15, and 16.5%, respectively. SPC inclusion led to a considerable increase in water absorption, thermal resistivity, and thermal diffusivity by 17.5, 6.3, and 17.6%, respectively, whereas no significant change was observed for these properties with incorporation of 20% FSBM. Additionally, all extruded products had high durability. Taken together, using ~30% DDG with20% FSBM or20% SPC as alternative protein sources resulted in viable extrudates with properties appropriate for yellow perch production. A future study investigating the effect of extrusion processing conditions on the production of complete vegetable-based protein feeds for yellow perch species would be appropriate.