首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Automatic Detection of 2D and 3D Lung Nodules in Chest Spiral CT Scans
  • 本地全文:下载
  • 作者:Ayman El-Baz ; Ahmed Elnakib ; Mohamed Abou El-Ghar
  • 期刊名称:International Journal of Biomedical Imaging
  • 印刷版ISSN:1687-4188
  • 电子版ISSN:1687-4196
  • 出版年度:2013
  • 卷号:2013
  • DOI:10.1155/2013/517632
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Automatic detection of lung nodules is an important problem in computer analysis of chest radiographs. In this paper, we propose a novel algorithm for isolating lung abnormalities (nodules) from spiral chest low-dose CT (LDCT) scans. The proposed algorithm consists of three main steps. The first step isolates the lung nodules, arteries, veins, bronchi, and bronchioles from the surrounding anatomical structures. The second step detects lung nodules using deformable 3D and 2D templates describing typical geometry and gray-level distribution within the nodules of the same type. The detection combines the normalized cross-correlation template matching and a genetic optimization algorithm. The final step eliminates the false positive nodules (FPNs) using three features that robustly define the true lung nodules. Experiments with 200 CT data sets show that the proposed approach provided comparable results with respect to the experts.
国家哲学社会科学文献中心版权所有