首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Enhanced CNN Based Electron Microscopy Image Segmentation
  • 本地全文:下载
  • 作者:Govindan-pp-84-97.pdf">S. M. Leena ; V. K. Govindan
  • 期刊名称:Cybernetics and Information Technologies
  • 印刷版ISSN:1311-9702
  • 电子版ISSN:1314-4081
  • 出版年度:2012
  • 卷号:12
  • 期号:2
  • 出版社:Bulgarian Academy of Science
  • 摘要:Detecting the neural processes like axons and dendrites needs high quality SEM images. This paper proposes an approach using perceptual grouping via a graph cut and its combinations with Convolutional Neural Network (CNN) to achieve improved segmentation of SEM images. Experimental results demonstrate improved computational efficiency with linear running time.
  • 关键词:Convolutional Neural Network; SEM image; perceptual grouping;constraints via a graph cut; segmentation using a graph cut; graph cut optimization;affinity graph; backpropagation; Maxflow/Mincut algorithm; Neuronal;segmentation.
国家哲学社会科学文献中心版权所有