摘要:COMAN is a compliant humanoid robot. The introduction of passive compliance in some of its joints affects the dynamics of the whole system. Unlike traditional stiff robots, there is a deflection of the joint angle with respect to the desired one whenever an external torque is applied. Following a bottom up approach, the dynamic equations of the joints are defined first. Then, a new model which combines the inverted pendulum approach with a three-dimensional (Cartesian) compliant model at the level of the center of mass is proposed. This compact model is based on some assumptions that reduce the complexity but at the same time affect the precision. To address this problem, additional parameters are inserted in the model equation and an optimization procedure is performed using reinforcement learning. The optimized model is experimentally validated on the COMAN robot using several ZMP-based walking gaits.