首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Revision: Variance Inflation in Regression
  • 本地全文:下载
  • 作者:D. R. Jensen ; D. E. Ramirez
  • 期刊名称:Advances in Decision Sciences
  • 印刷版ISSN:2090-3359
  • 电子版ISSN:2090-3367
  • 出版年度:2013
  • 卷号:2013
  • DOI:10.1155/2013/671204
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Variance Inflation Factors (VIFs) are reexamined as conditioning diagnostics for models with intercept, with and without centering regressors to their means as oft debated. Conventional VIFs, both centered and uncentered, are flawed. To rectify matters, two types of orthogonality are noted: vector-space orthogonality and uncorrelated centered regressors. The key to our approach lies in feasible Reference models encoding orthogonalities of these types. For models with intercept it is found that (i) uncentered VIFs are not ratios of variances as claimed, owing to infeasible Reference models; (ii) instead they supply informative angles between subspaces of regressors; (iii) centered VIFs are incomplete if not misleading, masking collinearity of regressors with the intercept; and (iv) variance deflation may occur, where ill-conditioned data yield smaller variances than their orthogonal surrogates. Conventional VIFs have all regressors linked, or none, often untenable in practice. Beyond these, our models enable the unlinking of regressors that can be unlinked, while preserving dependence among those intrinsically linked. Moreover, known collinearity indices are extended to encompass angles between subspaces of regressors. To reaccess ill-conditioned data, we consider case studies ranging from elementary examples to data from the literature.
国家哲学社会科学文献中心版权所有