首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:A Mathematical Characterization for Patterns of a Keller-Segel Model with a Cubic Source Term
  • 本地全文:下载
  • 作者:Shengmao Fu ; Ji Liu
  • 期刊名称:Advances in Mathematical Physics
  • 印刷版ISSN:1687-9120
  • 电子版ISSN:1687-9139
  • 出版年度:2013
  • 卷号:2013
  • DOI:10.1155/2013/934745
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper deals with a Neumann boundary value problem for a Keller-Segel model with a cubic source term in a d-dimensional box , which describes the movement of cells in response to the presence of a chemical signal substance. It is proved that, given any general perturbation of magnitude δ, its nonlinear evolution is dominated by the corresponding linear dynamics along a finite number of fixed fastest growing modes, over a time period of the order ln(). Each initial perturbation certainly can behave drastically differently from another, which gives rise to the richness of patterns. Our results provide a mathematical description for early pattern formation in the model.
国家哲学社会科学文献中心版权所有